随着无线传输技术的发展,无线遥控系统也得到很多改善,那么无线遥控具体指什么呢?其实简单来说,无线遥控就是指利用高频无线电波实现对模型的控制。然而传统无线遥控系统普遍存在着不足的地方,比如说同频率会干扰、遥控距离短等问题。原因主要在于载频较低导致带宽较窄使得同频干扰可能性的增大。
因此采用先进的2.4G遥控扩频技术,理论上来说可以让多人在同一地方同时遥控而不会互相干扰,而且距离也比传统无线遥控具有优势,所以很有必要将2.4 GHz扩频通信技术应用于无线遥控领域。
1系统方案设计
1.1采用WirelessUSB技术简介
在2.4 GHz频段,有许多较为成熟的通信技术可以借鉴,如蓝牙,Zigbee等。其中WirelessUSB技术非常值得注意。该技术由Cypress公司提出,工作在2.4 GHz(ISM)频段,相对于其他在2.4 GHz波段使用的无线短距技术,成本较低。消除了系统的复杂性和开销,避免了蓝牙与ZigBee等无线网络解决方案的困扰,方便易用,特别适合于点对点以及多点对多点的设备小数据包通信,而且功耗较低,是适用于2.4 GHz无线遥控的理想选择。
1.2 2.4G遥控系统设计框图及原理
系统分为发射和接收两部分,发射部分由PPM编码、PPM/PCM转换、扩频和功放等单元组成,接收部分由前置放大、解扩、PCM/PPM转换等单元组成,其结构如图1所示。
其工作过程是:在发射时,操作遥控设备的操纵杆,通过PPM编码产生一组PPM信号,经过PPM/PCM转换单元,进行时间采样量化后,实现PCM编码,基带单元将PCM信号根据接口协议传到扩频单元中,在扩频单元中,PCM基带信号进行直接序列扩频后,被调制到2.4 GHz频率上,经过功放单元放大后,由天线发射出去,完成发射。在接收时,射频信号被安装在模型上的天线接收到后,经过前置放大器,变为低噪声放大信号,送到接收机的解扩单元;在此进行射频信号的解扩和解调,获得为PCM基带信号,然后送到接收机PCM/PPM单元,进行PCM信号到PPM信号的转换,恢复成PPM模拟信号输出到各个舵机,完成相应的动作。
系统设计指标为:工作频段:2 400~2 483 MHz;信道带宽:小于或等于1 MHz;扩频方式:直接序列扩频;伪码长度:最长64 chips,Gold码序列,可用序列进行优选;数据速率:不低于15.625 Kb/s,可达62.5 Kb/s;信道数目为79;发射功率为100 mW;通信距离为1 000 m;接收机灵敏度:约-95 dBm;调制方式:高斯频移键控调制(GFSK)。
2 系统实现
2.1 系统硬件实现
系统使用射频芯片配合工作,Mega 16L完成系统控制以及PPM/PCM/PPM之间的转换功能;射频芯片CYRF6936完成2.4GHz的扩频调制以及解扩解调。如图2所示。
其特点是:工作电流为21 mA;最大发射信号强度为+7 dBm;最大接收灵敏度为-97 dBm;睡眠电流小于1μA;直接扩频序列时最大速率为250 Kb/s,GFSK时最大传输速率为1 Mb/s;具有自动执行的程序装置(ATS),无需处理器的介入处理;能提供给微处理器或感应器的电源管理装置(PMU);具有发射与接收分离的16 b FIFO数据缓存器;具有接收信号强度指标(RSSI);睡眠模式下仍可控制SPI接口;工作电压介于1.8~3.6 V;工作温度介于摄氏0~70℃。CYRF6936芯片支持4种不同的资料传输模式:GFSK模式,8DR模式,DDR模式,SDR模式。模式选择通过配置寄存器(0x03)实现。接收和发射均采用中断的方式,共有3种中断:发射中断、接收中断和唤醒中断。这些中断共用一个IRQ引脚。通过配置相应的寄存器使能发射或接收中断,可用于系统的数据收发。
在发射时Mega 16L接收PPM信号并进行编码,随后送入CYRF6936发射出去;在接收时过程相反,CYRF6936的状态设置以及收发信号的交换均通过SPI口通信实现。SPI口通信采用双8位数据格式发送,前8位为读写方向命令、地址增加模式、地址,后8位为数据,数据发送的时钟有Mega16L提供。例如,通过SPI对寄存器(0x0F)写入FRC END=1和ENDSTATE=000,可以使得CYRF6936进入低功耗的睡眠状态。当进入发射状态或者接收状态时(通过设置寄存器(0x02)或者(0x05),CYRF6936自动从睡眠状态中唤醒。
2.2遥控系统软件设计
遥控系统软件主要包括对射频单元的控制程序、PPM/PCM编码进行转换的程序。在此采用AVRmega16综合开发板Ver3.2和AVRStudio来加快软件程序开发,并进行模拟真实硬件环境下的软件仿真。
2.2.1 控制程序设计
控制程序是控制着整个系统的工作状态,程序流程如图3所示。
2.2.2 编码转换程序设计
PPM和PCM信号之间的转换是采用Mega 16L计数器完成的。通常的PPM信号每帧的持续时间不超过20 ms,同步帧不小于3 ms,各信道帧在1~2 ms之间,如图4所示。
在发射时计数器在每一帧数据中以10μs为周期进行计数,当出现高电平时开始计数,在下一个高电平出现时读数,并进行计数器清零,然后转入下一个计数周期。将计数器记下的数进行编码,这就完成了PPM-PCM的编码转换。在接收时,通过PCM信号的大小通过计数器产生相应长度的脉冲间隔就恢复为PPM信号。
由此可以看出2.4G遥控系统不仅具有很强的抗干扰能力,而且发射距离远。而且对该方案予以了具体实现,在室外空旷场地进行遥控测试,配合功放的情况下,该遥控系统有效操作距离可达到500 m,获得较满意的结果,与传统无线遥控系统比较,优势不言而喻。